3D shape recovery from image focus using kernel regression in eigenspace

نویسندگان

  • M. Tariq Mahmood
  • Tae-Sun Choi
چکیده

0262-8856/$ see front matter 2009 Elsevier B.V. A doi:10.1016/j.imavis.2009.10.005 * Corresponding author. Tel.: +82 629702392; fax: E-mail addresses: [email protected] (M.T. Mahmood) Shape from focus (SFF) is one of the optical passive methods for three dimensional (3D) shape recovery of an object from its two dimensional (2D) images. The focus measure plays important role in SFF algorithms. Mostly, conventional focus measures are based on gradient, so their performance is restricted under noisy conditions. Moreover, SFF methods also suffer from loss of focus information due to discreteness. This paper introduces a new SFF method based on principal component analysis (PCA) and kernel regression. The focus values are computed through PCA by considering a sequence of small 3D neighborhood for each object point. We apply unsupervised regression through Nadaraya and Watson Estimate (NWE) on depth values to get a refined 3D shape of the object. It reduces the effect of noise within a small surface area as well as approximates the accurate 3D shape by exploiting the depth dependencies in the neighborhood. Performance of the proposed scheme is investigated in the presence of different types of noises and textured areas. Experimental results demonstrate effectiveness of the proposed approach. 2009 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computation Optical Flow Using Pipeline Architecture

Accurate estimation of motion from time-varying imagery has been a popular problem in vision studies, This information can be used in segmentation, 3D motion and shape recovery, target tracking, and other problems in scene analysis and interpretation. We have presented a dynamic image model for estimating image motion from image sequences, and have shown how the solution can be obtained from a ...

متن کامل

LNCS 7766 - Medical Computer Vision

We present a novel 2D/3D deformable registration method, called Registration Efficiency and Accuracy through Learning Metric on Shape (REALMS), that can support real-time Image-Guided Radiation Therapy (IGRT ). The method consists of two stages: planning-time learning and registration. In the planning-time learning, it firstly models the patient’s 3D deformation space from the patient’s time-va...

متن کامل

Real-Time 2D/3D Deformable Registration Using Metric Learning

We present a novel 2D/3D deformable registration method, called Registration Efficiency and Accuracy through Learning Metric on Shape (REALMS), that can support real-time Image-Guided Radiation Therapy (IGRT ). The method consists of two stages: planning-time learning and registration. In the planning-time learning, it firstly models the patient’s 3D deformation space from the patient’s time-va...

متن کامل

Application of Shape Analysis on 3D Images - MRI of Renal Tumors

The image recognotion and the classification of objects according to the images are more in focus of interests, especially in medicine. A mathematical procedure allows us, not only to evaluate the amount of data per se, but also ensures that each image is pro- cessed similarly. Here in this study, we propose the power of shape analysis, in conjunction with neural networks for reducing white n...

متن کامل

Kernel Fisher discriminant for shape-based classification in epilepsy

In this paper, we present the application of kernel Fisher discriminant in the statistical analysis of shape deformations that indicate the hemispheric location of an epileptic focus. The scans of two classes of patients with epilepsy, those with a right and those with a left anterior medial temporal lobe focus (RATL and LATL), as validated by clinical consensus and subsequent surgery, were com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Image Vision Comput.

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2010